
1

Automatic Parallelization:
A Comparison of CRAY fpp and KAI KAP/CRAY

RND-90-010

Douglas M. Pase1

Katherine E. Fletcher
Computer Sciences Corporation

NASA Ames Research Center
Moffett Field, CA 94035

Abstract

In this report we examine two existing commercial parallelizing code restructurers: the
CRAY Autotasking2 facility and Kuck and Associates' KAP/CRAY. In particular we mea-
sure their ability to vectorize and parallelize 25 scientific benchmarks for a CRAY Y-MP
supercomputer. We measure the overall code performance, the speedup gained by paral-
lelizing codes with these products, and the overhead used in the parallel execution of each
benchmark.

Introduction

Many different ideas about the abilities of parallelizing tools have been put forward over
the years. Some claim that existing programs are inappropriate for parallel execution be-
cause the programming model used (the Von Neumann model) is inherently sequential, and
such codes should be rewritten using either languages designed to express parallelism, or
sequential languages with parallel extensions added. Others claim that the codes them-
selves are adequate, and that code restructuring tools will be able to provide the needed par-
allelism without the expense of relearning programming techniques and rewriting
applications. Still others think that the problem of parallelizing existing codes is not im-
possible, but it is too complex for automatic tools. For them, interactive code restructuring
tools seem to be the way to go.

In this report we explore the second assertion, that is, that existing "dusty deck" programs
contain sufficient parallelism, at least for moderately parallel machines, and that it is rea-
sonable to expect a sophisticated compiler to find it. To examine this question, we compare
the performance of two of the most sophisticated commercially available code restructur-
ers: CRAY fpp, and Kuck and Associates KAP/CRAY. Performance is measured on a par-
allel vector supercomputer—an 8-processor CRAY Research, Inc., Y-MP.

Both tools were designed to be used either as automatic code restructuring tools, or as
"batch mode" restructurers. We make no attempt to evaluate either tool as a batch tool, that
is, we do not manually improve the code based on what the restructurer was or was not able

1. This work was supported by NASA Contract No. NAS2-12961 while the authors were employed by Com-
puter Sciences Corporation under contract to the Numerical Aerodynamic Simulation Division at NASA
Ames Research Center.
2. UNIX is a trademark of AT&T. CRAY, CRAY Y-MP, CFT77, CF77, Autotasking, and UNICOS are
trademarks of Cray Research, Inc.

2

to do. We put all benchmarks through one or both parallelizers and compile the result with-
out further modification. The only exception to this rule is that we correct errors when the
restructured code fails to execute correctly. All vectorization and parallelization (CDIR
and CMIC) directives originally in the benchmarks were also removed prior to their use.

Benchmarks were selected from both public sources and sources private to NAS. The
benchmarks reflect as fair a representation of production codes as possible. The public
codes include the Perfect Benchmark Suite [1], Livermore Loops, and the NAS Kernels.

Hardware Environment

All codes were executed on a CRAY Research, Inc., Y-MP. Benchmarks were executed in
dedicated time, that is, no other programs were allowed to use the machine while timings
were taking place. In this way no external factors, such as memory bank conflicts with oth-
er programs, were allowed to interfere with benchmark performance. In addition, all inter-
mediate I/O was sent to the Solid-State Device (SSD) instead of rotating storage, to reduce
the impact of I/O on performance. Important Y-MP hardware characteristics are summa-
rized in Table 1. CPU functional units are described in Table 2, and Y-MP register struc-
ture is given in Table 3.
A more complete description of the Y-MP hardware system may be found in [2].

3

Number of CPUs: 8
Clock Period: 6.0 ns
Instruction Buffer Size: 512 16-bit parcels

(4 buffers)
Memory size: 128 million 64-bit words

(2 ** 30 bytes)
Memory access time: 17 clock periods (107 ns)
Memory bank cycle time: 5 clock periods (30 ns)
Number of memory banks: 256
Number of memory ports/CPU: 4 (2 read, 1 write, 1 I/O)
Solid-State Device: 256 million words

200 Mwords/sec transfer
(4 ports @ 50 Mw/s each)

Table 1 — Y-MP Hardware Features

Address Functional Units Add
Multiply

Scalar Functional Units Integer Add
Shift
Logical
Population/Parity/Lead 0

Vector Functional Units Integer Add
Shift
Logical (2)
Population/Parity

Vector/Scalar Functional Units Floating Point Add
Floating Point Multiply
Reciprocal Approximation

Table 2 — CPU Functional Units

Address (A) 8 32-bit Registers
Intermediate Address (B) 64 32-bit Registers
Vector (V) 8 Registers of 64 elements

each, 64 bits per element
Scalar (S) 8 64-bit Registers
Intermediate Scalar (T) 64 32-bit Registers

Table 3 — Y-MP Register Structure

Software Environment

All benchmarks were written in Fortran for a serial vector supercomputer. Translation
from serial code to parallel code was performed by CRAY fpp, or Kuck and Associates
KAP/CRAY, or both.
Benchmarks were translated from Fortran code with embedded microtasking directives to
Fortran with calls to the CRAY parallel library by the utility fmp. The resulting code was
then compiled by

4

Fortran to Microtasked Fortran CRAY fpp 4.0.1
KAP/CRAY1.01

Microtasked Ftn to parallel code CRAY fmp4.0.1
Fortran Compiler CFT774.0.1
Operating System UNICOS5.1.10
Libraries UNICOS5.1.10

Table 4 — Software System Versions

the CRAY cft77 Fortran compiler. The version numbers for each of the products are given
in Table 4.

The Microtasking parallel environment is supported through special calls to the CRAY par-
allel library. Microtasking supports a model of parallel programming known asSingle Pro-
gram, Multiple Data, or SPMD. The idea is that when a program is executed each process
will execute the same program, but on different data. Also, each process executes indepen-
dently of other processes so they need not take the same amount of time to execute, nor
even execute the same sequence of instructions.

At the beginning of the execution of a parallel program, slave processes are created and
placed in a "parked" state. While in this state they accrue "semaphore wait time." Other
processes can use the CPUs while the slaves are in this state, but the slaves have a high pri-
ority when they are unparked and return to the run queue. Once running, the slaves resume
accumulating "user time."

Parallel regions in the program are placed within CMIC$ PARALLEL and CMIC$ END
PARALLEL directives. The directives may be conditional or unconditional. When a par-
allel region is entered, the master process unparks the slave processes, which are returned
to the run queue. Each process then executes the same segment of code in parallel with the
others. If the code segment is a parallel loop, iterations of the loop are divided into blocks
which are distributed across the available processes. Iteration distribution is done one iter-
ation per processor. At the end of the parallel region, all slave processes are parked once
again. Table 5 summarizes the overhead involved with managing the parallel execution for
both master and slave processes in clock periods (CPs), and the rough equivalent in instruc-
tions.

5

MASTER:
Get CPUs 50-100 msec (2-4 million instr.)
Unpark slaves 175 CPs (44 instructions)
Get Iteration 25 CPs (6 instructions)
END PARALLEL 30 CPs (7 instructions)

SLAVE:
Unpark Slaves 200 CPs (50 instructions)
Get Iteration 25 CPs (6 instructions)
END PARALLEL 30 CPs (7 instructions)
Repark Slaves 75 CPs (19 instructions)

Table 5 — Parallel System Overhead

CRAY Fpp And KAP/CRAY

The set of compiler options used to compile a program can strongly affect its performance.
In this study we had to trade off aggressive parallelization against reliability. Aggressive
parallelization held opportunities for greater speedups, but also carried the risk of not func-
tioning for all of the codes. As a compromise we used the most aggressive options that also
worked for a reasonable majority of the codes. For fpp we selected -Wd-e46ijt except
where noted otherwise. This selection enables fpp switches 4, 6, i, j, and t, which mean:

4 Asserts that private array initial values are not needed.

6 Enables automatic inlining of routines that are less than
50 source lines in length, and do not call other routines.

i Enables inner loops with variable iteration counts to be
autotasked, if analysis warrants it.

j Replaces matrix multiplication loops with a library call.

t Enables aggressive loop exchanges to take place.

We used the default command line switch settings for KAP. The default settings were as
follows:

6

MV=3 Sets the minimum vector length to 3.

MVC=1000 Sets the minimum amount of work in a loop that
KAP will execute in vector-concurrent mode to
1000 iterations. Two-version loops are created if
the loop bounds are unknown. No two-version
loops are generated when mvc=-1 is used.

MC=950 Sets the minimum amount of work in a loop that
will be concurrentized. Again, two-version loops
are generated when loop bounds are unknown.

P=0 When a program is concurrentized, it is always
compiled for an unknown number of processors.

DUST=3 Loop re-rolling is enabled, and certain IF/DO code
transformations are performed.

LM=21000 Sets a crude upper limit on the amount of work
KAP will perform in trying to optimize a loop.

O=5 KAP vectorizes any loop where it is legal to do so.
Loop interchanges may be applied, even totriangular loops, and

reductions are recognized.
Enhanced dependence analysis is used, and KAP
attempts to break dependence cycles. Lifetime
analysis of variables is performed. Array
expansion is performed.

UR=16 Loops are unrolled by at most 16 iterations.

UR2=40 Same as UR, but the limit is a measure of "work"
within the loop rather than the number of
iterations.

NOEXPAND Local subroutine inlining is inhibited. Using x=a
allows KAP to inline some subroutines and
functions. Exd=-1 restricts inline expansion to
routines which do not contain function or
subroutine references.

Vectorization and parallelization tools rely heavily on techniques for code analysis, prima-
rily dependence and loop analysis, and on code transformations. Loop analysis classifies
the type of loop and the existence of dependence cycles between statements. This informa-
tion is used in determining which loop transformations will be legal and beneficial.

Dependence analysis determines whether loop iterations can be executed independently, or
whether reordering them will cause the program to execute incorrectly. Comprehensive de-

7

pendence analysis for all possible array subscript expressions is very time consuming (it is
an NP-Complete problem), and therefore must be approximated. Accurate dependence
analysis at times requires information about how the program is used, i.e., runtime infor-
mation. A third factor which may inhibit an accurate analysis is that a dependence may tru-
ly exist within a program, but the algorithm in which it occurs may be insensitive to its
violation and thus the dependence could be ignored.

Once the dependence and loop analyses have been done, loop optimizations may take
place. Generally the optimizations are different types of loop transformations which en-
hance vectorization or parallelization. Many of the code transformations performed by fpp
and KAP will be described below. A complete description of the fpp code transformation
techniques may be found in [3]. Code transformations which KAP uses are described in
[4]. A summary of each may be found in Table 6.

Benchmarks

As mentioned before, benchmarks used in this study were selected from NAS sources and
the Perfect Benchmarks [1]. NAS private codes include 2-D and 3-D aerospace simulation
codes, structural codes, and synthetic benchmarks either developed here or in common use
at the NAS facility. NAS private codes include seven Navier-Stokes computational fluid
dynamics (CFD) codes, of which four involve chemistry, and one solves a supersonic prob-
lem. Of the remaining NAS codes, one solves a structural problem for a high-Mach air
frame, and two are synthetic FFT codes. A detailed description of each benchmark is given
in Table 7.

Benchmark memory requirements vary from as little as 110 Kword to as large as 54
Mword. The distribution of memory requirements for the various benchmarks is shown in
Figure 1. A detailed summary of benchmark characteristics is given in Appendix A.

Code Transformation fpp KAP
Reduction recognition yes yes
Recurrence recognition yes yes
Two version loops yes yes
Vectorize IF loops yes yes
Partial loop vectorization (fission) yes yes
Loop collapse yes yes
Loop fusion yes no
Loop interchange yes yes
Loop peeling yes yes
Loop unrolling yes yes
Loop rerolling yes yes
Scalar expansion yes yes
Code inlining yes yes

Table 6 — Fpp And KAP Code Transformations

8

Figure 1 — Distribution of Benchmark Memory Requirements

Total number of floating point operations vary from 58 million to 78 billion operations.
Most of the NAS codes have between 10 and 25 billion floating point operations, while the
Livermore Loops, NASKERN, and all but one of the Perfect Benchmarks are much smaller
than that. The largest code is NAS10, the smallest is SPICE.

Given the available floating point units on the Y-MP, the exact mix of floating point addi-
tions, multiplications, and reciprocals is critical to achieving maximum performance. If
there are significantly more operations of one type than another, some floating point func-
tional unit will be left with no work while another will have an excess. More precisely,
each functional unit should have enough work to fill the same number of clock periods if it
is to achieve maximum overlap. One should note, however, that scheduling conflicts and
program dependences can further inhibit overlap even when the number of each type of op-
eration is balanced. The next figure shows

9

1 is a general purpose 3-D fluid flow solver for high angle-
NAS01 of-attack problems. It uses an implicit finite difference

scheme for solving the viscid, unsteady flow about a sphere.
It employs approximate factorization with flux-split

differencing in the solution.

2 simulates the incompressible laminar fluid flow around a
NAS02 single post mounted between two plates. The Navier-Stokes

equations are solved in three dimensions by an approximate
factorization algorithm, using pseudocompressibility to solve

the pressure field.

3 computes the decimal expansion of the mathematical constant
NAS03 π. The core of this program uses highly vectorizable fast

Fourier transforms (FFTs).

4 repeatedly computes forward and reverse FFTs on pseudorandom
NAS04 data. The FFTs are highly vectorizable. With hand-inserted

vectorization directives, both NAS03 and NAS04 are capable
of 150 to 160 million floating point operations per second

(MFLOPS) on a single Y-MP CPU.

5 gives a time-accurate 3-D simulation of the mixing of
NAS05 reactive fluids. Pseudospectral methods are used to compute

the derivatives, and fluid flow incompressibility is
modified by adding terms to account for variable density in

the fluid.

6 gives a time-accurate solution to a 3-D Navier-Stokes
NAS06 problem. The code sweeps entire planes, performing a

Gaussian elimination of conserved quantities at each cell.

7 uses a fast, accurate, Choleski method for solving 16,000
NAS07 linear equations. The test case used is the structural

analysis of an air frame under high-Mach conditions.

8 solves a 2-D Navier-Stokes problem with terms included to
NAS08account for reactive chemistry.

9 solves a supersonic 2-D Navier-Stokes problem.
NAS09

10 solves a 2-D Navier-Stokes problem involving chemistry.
NAS10

11 executes 24 common synthetic Fortran kernel loops. The
MFLOP90 loops range in complexity from easily vectorized, to very

difficult. (This code is also known as the Livermore
Loops.)

12 7 kernel routines often used in CFD calculations. They
NASKERN include an MxM matrix multiply, a 2-D complex FFT, Choleski

factorization, a vectorized block tri-diagonal solver,
Gaussian elimination, a vortex generator, and a penta-

diagonal matrix solver.

Table 7 — Benchmark Descriptions

10

13 a fluid dynamics code used to study air pollution.
AMD Its computational kernel relies heavily on FFTs.

14 solves a 2-D supersonic reentry fluid dynamics problem using
ARC2Da sparse linear system solver and a fast elliptic solver.

15 a molecular dynamics simulation of a nucleic acid. This
BDNAcode uses an ordinary differential equation (ODE) solver.

16 performs a structural dynamics analysis for an engineering DY-
FESM design problem. It uses a sparse linear system solver, a

nonlinear algebraic system solver, and an ODE solver.

17 solves a 2-D transonic flow fluid dynamics problem. Its
FLO52 computational kernel uses a multigrid scheme with an ODE

solver.

18 performs a molecular dynamics simulation of liquid water,
MDG using an ODE solver.

19 solves a signal processing problem involving seismic
MG3Dmigration. The code uses both FFTs and ODE solvers.

20 2-D fluid dynamics simulation of a section of ocean. This
OCEANsolver uses primarily FFTs.

21 lattice gauge solution to a quantum chromodynamics problem.
QCD A Monte Carlo scheme is used in the solution.

22 another fluid dynamics code—this code performs a weather SPEC77
simulation using FFTs and rapid elliptic problem solvers.

23 simulates electronic circuits using sparse linear solvers
SPICEand ODE solvers.

24 another signal processing code—this code performs missile
TRACK tracking using convolution as the primary mathematical

technique.

25 uses integral transforms to solve a 2-electron problem from TRFD
molecular dynamics.

Table 7 — Benchmark Descriptions (cont.)

the percent of clock periods occupied by floating point adds, multiplications, and recipro-
cals. A full divide requires three multiplies and a reciprocal. Figure 2 clearly shows that
these benchmarks are fairly well balanced as far as the additions and multiplies are con-
cerned, but the reciprocal unit is somewhat underutilized.

11

Figure 2 — FLOP Balance Normalized By CPs

Benchmark I/O requirements were very low, with only a few exceptions. Sixteen bench-
marks required less than 1 Mbyte, four used between 1 and 10 Mbytes, and only one
(MG3D) used more than 100 Mbytes of I/O. As mentioned earlier, all I/O was mapped to
the SSD rather than going out to a rotating disk. Using the SSD reduced the actual time
spent in I/O to a minimum.

The benchmarks showed a wide mix of performance when compiled with default vector-
ization (Figure 3). The codes that have the best performance (over 100 MFLOPS) are all
CFD codes that do not use FFTs as solvers (including both 2-D and 3-D codes), kernels
from CFD codes (NASKERN), and a molecular dynamics code which employs an ODE
solver (BDNA). The FFT based codes, among others, have a relatively moderate level of
performance.

Compilation Expense

Code optimizations can only come at the expense of code analysis. Sometimes the analysis
is inexpensive, sometimes it is not. The analysis necessary for vectorization is generally a
subset of that required for parallelization. In order to provide a basis for comparison, Fig-
ure 4 gives the compilation times, in seconds, for each

12

Figure 3 — Default Vectorization Performance

of the benchmarks using only the default CRAY optimizations. All program compilation
times are given in Appendix B.

As can be seen from the chart, all codes compiled fairly quickly, even the larger codes like
QCD (number 23 in the chart). The question is whether enhanced vectorization or paral-
lelization adds significantly

13

Figure 4 — Compile Times with Default Vectorization

to the compile time. In a research environment like NAS, codes are constantly being mod-
ified and recompiled. Thus features that take too long will go unused unless they also sig-
nificantly shorten the execution time. The following charts show how enhanced
vectorization and parallelization increase the compilation time. The shortened execution
time will be treated in the next two sections.

The next chart (Figure 5) gives the ratio of enhanced vector compile times (Cv) to default
compile times (Cd). From the chart it is clear that fpp adds little to compilation times (about
23%), but KAP/CRAY adds significantly (112% on the average). In one case (NAS09)
KAP adds over 350%, boosting the compile time from 38 to 173 seconds, or about three
minutes. Even though this is much more time, it is not an intolerable amount of time to
wait for a compilation.

Figure 6 shows the expense of compilation using automatic parallelization. The results are
similar but more exaggerated than for enhanced vectorization, since the analysis for paral-
lelization is more extensive. For parallelization the average compilation time for fpp is
about 3.2 times the default compilation time, while the average KAP time is only a little
worse than fpp (3.78). The range for parallel compiles, however, is much larger. Fpp rang-
es from 48% to 429% more time than default vectorization, while KAP ranges from 88%
more to 600% more compile time. The longest KAP compile time is just under 400 seconds
(6.5 minutes), which could be tiresome to wait for if it happened too frequently.

Figure 5 — Enhanced Vector Compilation Time Expense

14

Figure 6 — Parallel Compilation Expense

Enhanced Vectorization

The CRAY Fortran compiler, cft77, vectorizes some types of loop constructs, but in order
to keep the compilation time to a minimum it generally uses only those optimizations that
are both fast and frequently effective. Fpp, on the other hand, performs a more extensive
analysis and therefore has greater potential for improving code performance. Figure 7
shows the performance of all benchmarks, in millions of floating point operations per sec-
ond (MFLOPS), after enhanced vectorization has been used. Appendix C contains perfor-
mance information for each of the benchmarks under both default and enhanced
vectorizations.

From the chart it appears that there is little change in benchmark performance. Those codes
that do well without enhanced vectorization also do well with it, and those that do poorly
without are not much improved. Figure 8 summarizes the actual speedups (default vector-
ization elapsed time divided by enhanced vectorization elapsed time) observed for the in-
dividual benchmarks.

Figure 8 seems to indicate that the speedups cluster about 1.00 (i.e., no speedup at all), and
indeed this is the case. The average speedup achieved by fpp is 1.02, which is not as good
as one might expect. Fpp gained some improvement for 12 of the 25 codes, or just less than
half of the benchmarks. We were hoping for at least 25% improvement but none of the
codes did even that well, although two

15

Figure 7 — Enhanced Vector MFLOPS

codes were close. The median speedup was 1.00, the minimum 0.84 (16% slower than no
enhanced vectorization), and the best speedup was 1.24. The KAP average was only slight-
ly better but the median was the same as fpp's. Statistics for fpp, KAP, and both are sum-
marized in Table 8.

Figure 8 — Speedup from Enhanced Vectorization

16

fpp KAP Both
Codes Improved 12 10 17
Median Speedup 1.00 1.00 1.03

Average Speedup 1.02 1.03 1.09
Minimum Speedup 0.84 0.89 0.83
Maximum Speedup 1.24 1.53 1.96

Table 8 — Enhanced Vectorization Speedup Statistics

Combining KAP and fpp had some interesting results. The minimum speedup was 0.83—
worse than either fpp or KAP alone, but all other statistics showed some improvement. The
median increased to 1.03—slightly better than either KAP or fpp alone, while the average
speedup was significantly improved. Fully 17 of the 25 codes showed some improvement,
and the best speedup was nearly a factor of two over the default vectorization. The follow-
ing chart (Figure 9) gives the distribution of speedups for fpp only (black column), KAP
only (white column), and both (grey column).

The four codes which benefitted most from enhanced vectorization used FFTs as a major
part of their computation. Unfortunately, at least one of the FFTs (NAS04) performed well
below what it was capable of, even with enhanced vectorization. As a separate experiment,
NAS04 was hand optimized by inserting compiler directives above loops which were
known to be vectorizable. In every case the apparent dependencies were known to be false
— no true dependencies were violated at any time. The elapsed time of

Figure 9 — Enhanced Vectorization Speedup Distribution
the new code was 89.28 seconds, which corresponds to 160.81 MFLOPS, a speedup of 2.89
over the default compiler optimizations, or a factor of 2.55 faster than the original code us-
ing enhanced vectorization.

Parallelization

The primary motivation for using parallel processors in scientific work is to increase the

17

computational power available to a user. Unfortunately, one's ability to exploit that power
depends on the quantity and granularity of parallelism within the program, and the over-
head one must pay to start, suspend, synchronize, and terminate parallel tasks. Figure 10
shows the raw performance of each of the benchmarks using 4 CPUs in its execution. Per-
formance information for the parallel execution of each of the benchmarks is included in
Appendix C.

If a program has sufficient parallelism one can expect the speedup to be close to the number
of available processors. Figure 11 shows the speedup obtained by using fpp, KAP/CRAY,
and both with four CPUs in dedicated time.

Figure 10 — 4 CPU MFLOPS

18

Figure 11 — 4 CPU Speedups

The speedup is calculated using enhanced vectorization as the basis for comparison even
though it did not always improve the execution time. Given symbolically, then-processor
speedup is defined here as

SS(,n) = F(TS(,v),TS(,n))
whereTv andTn are the enhanced vector andn-CPU elapsed times, respectively.

This figure shows widely scattered speedups for the benchmarks. It is not too surprising
that some codes would parallelize better than others, nor even that the overhead of attempt-
ing to parallelize some codes would be greater than the benefits, yielding a speedup less
than one. It is valuable to note, however, that many of the codes did show some improve-
ment: 15 benchmarks compiled with fpp showed some improvement over enhanced vec-
torization, 20 improved with KAP, and 17 improved when both fpp and KAP/CRAY were
used. The benchmark performance statistics for the 4 CPU runs are summarized in the Ta-
ble 9. The distribution of speedups is given in Figure 12.

19

fpp KAP Both
Codes Improved 15 20 17
Median Speedup 1.14 1.10 1.07

Average Speedup 1.41 1.42 1.48
Minimum Speedup 0.65 0.91 0.66
Maximum Speedup 2.88 2.90 2.99

Table 9 — 4 CPU Speedup Statistics

The FFT codes which improved significantly under enhanced vectorization did not im-
prove as much as might be expected under parallelization. This is in part because even after
enhanced vectorization they were relatively poor performers—under 100 MFLOPS on a
single CPU. The improvement seen with 4 CPUs matches the improvement gained under
enhanced vectorization. The semaphore wait time for these codes is very close to 75%.
This indicates that the improvements did not come from parallelization, but rather from the
enhanced vectorization which is also present with the parallelization.

The codes which performed well under parallelization were 2-D CFD codes and one 3-D
CFD code that didnot use FFTs in their computational kernel. Each of these codes were
in the 100 to 200 MFLOPS range, but the fact that these codes are 2-D CFD codes is more
important than their initial high performance. Other codes displayed equally high perfor-
mance under enhanced vectorization but did not perform as well under parallelization.

Figure 12 — 4 CPU Speedup Distribution

A separate experiment was conducted in which NAS04 was hand optimized, as it was for
enhanced vectorization. The result was that its elapsed time dropped to 51.84 seconds, with
101.43 seconds of CPU time on 4 CPUs. This corresponds to 276.93 MFLOPS, or more
than 4 times better than any execution without hand optimization.

If one compares the 4-CPU distribution against the enhanced vectorization speedup distri-
bution, it is readily apparent that they are similar, in that the majority of the codes show less

20

than a 50% improvement. They also differ in that a greater number of benchmarks show
an improvement greater than 50% (i.e., a speedup greater than 1.50). Another difference
is that the codes which make up the high end of vectorized codes are FFTs, where the CFD
codes were improved by parallelization and FFTs were not.

Each of the benchmarks was also run with 8 CPUs to see how the performance would differ
from 4 CPUs. The raw performance (in MFLOPS) is given in Figure 13. Figure 14 shows
the speedup gained by using 8 CPUs. The statistics are summarized in Table 10, and the
distribution of speedups is given in Figure 15.

Figure 13 — 8 CPU MFLOPS

21

Figure 14 — 8 CPU Speedups

The 8 CPU speedup scatter plot (Figure 14) shows several things of interest. It shows that
the codes which improved the most with 8 CPUs were the same codes that improved the
most with 4 CPUs, namely, CFD codes. It is also clear that the efficiency is dropping rap-
idly with an increasing number of CPUs. Parallel efficiency is defined as

ES(,n) = F(SS(,n),n) = F(TS(,v),n TS(,n))

(For example, the 8-CPU efficiency isTv/(8*T8)). The best efficiencies obtained by the 4
CPU runs were close to 75%, the equivalent of using 3 out of 4 CPUs. The highest 8 CPU
efficiencies were lower—about 50%, or the equivalent of using 4 CPUs out of 8. Essen-
tially, we had to double the number of CPUs in order to buy that additional 25% improve-
ment.

22

Figure 15 — 8 CPU Speedup Distribution

Parallelism and Overhead

Fpp and KAP/CRAY exploit parallelism found in program loops. When nested loops are
encountered it is generally more effective to vectorize the inner loops and distribute outer
loop iterations across the available processors. Vectorization should never be sacrificed for
the sake of large grain parallelism, because of the low initial overhead and the high poten-
tial gain vectorization offers. Data dependencies may interfere with both the vectorization
and parallelization of loops. If the loop is large and highly vectorizable, it is often parallel-
izable.

Given the speedup and the number of processors, we can calculate the effective parallel
fraction of a code. Amdahl's Law says that then-processor speedup (Sn) is related to the
fraction of the operations which can be performed in parallel (p) and the number of proces-
sors (n) by the equation

SS(,n) = F(1,1-p+F(p,n))

Amdahl's Law assumes that the parallel operations can be exploited without incurring any
penalty, and the operations are continuous rather than discrete. In MIMD systems neither
assumption is true,

23

fpp KAP Both
Codes Improved 15 17 17
Median Speedup 1.18 1.06 1.06

Average Speedup 1.59 1.53 1.63
Minimum Speedup 0.64 0.87 0.66
Maximum Speedup 4.24 4.23 4.40

Table 10 — 8 CPU Speedup Statistics

but the assumption of no overhead is most important. The microtasking library incurs over-
head in creating, suspending, restarting, synchronizing, and terminating parallel tasks. The
overhead incurred within a code will depend on the number of processors used, and the
number, size, and structure of each loop. Thus Amdahl's Law would have to have a term
to account for parallel overhead which varied with the conditions of execution. However,
if the overhead varies only slightly with the number of processors, one can at least obtain
theeffective parallel fraction, which will give some indication of a code's parallel perfor-
mance, by solving Amdahl's Law forp.

p = F(n,(n-1))B(1 - F(1,SS(,n))) = F(n,(n-1))B(1 - F(TS(,n),TS(,v)))

The next chart (Figure 16) shows the effective parallel fraction for each of the benchmarks
using 4 CPUs. When we report values of the parallel fractionp for a given program, we
will generally present it as a percentage, e.g.,p=0.43 would be reported as 43%. Notice
also that the parallelism is negative if the application is slowed by parallelization. This can
occur when the overhead of initiating and terminating a parallel task is larger than the ben-
efit gained.

The overhead forn processors is defined here as

Overhead = 100 F((UserS(,n)+SysS(,n))-(UserS(,v)+SysS(,v)),(UserS(,v)+SysS(,v)))

whereUser andSys are the user and system times, respectively, for then-CPU parallel runs
(n) or the enhanced vector runs (v). Overhead for the 4 CPU runs is shown in Figure 17.

Loops that vectorize well do so because the iterations, or at least parts of the iterations, can
be executed independently. If there is enough independent work in these loops, the itera-
tions can be divided between multiple processors for a net gain in speed. How much work
is "enough" is determined by the overhead involved in starting up the parallel processors
and dividing the loop iterations. This overhead is in addition to what a serial version of the
same program would do, so it necessarily increases the work load of the machine.

Very long loops permit the overhead to be amortized over many iterations, which improves
the overall performance of the code. The lengths of the dominant loops were measured for
several codes, and the results are recorded in Table 11. Loop lengths are measured in iter-
ations. (Recall that NAS04 is an FFT code, while the others are CFD codes.) The parallel
fraction for NAS04 is from the automatically parallelized version. The hand optimized ver-
sion has a parallel fraction of 55%.

24

Figure 16 — % Parallelism in 4 CPU Runs

Figure 17 — % Overhead in 4 CPU Runs

The overhead is especially important to the throughput of a machine. A 100% overhead
means that as much time is being spent maintaining parallelism as is accomplishing useful
work. It also means the throughput could be reduced by 50%. The overhead is very high

25

for many codes, most of which do not parallelize well. Not surprisingly, the codes which
do parallelize well have low levels of overhead. If only the high performance codes were
used (those with speedups greater than 2.00), the average overhead would be around 20%.
This would reduce the potential throughput by about 17% over serial execution. This might
be acceptable if there are enough idle CPU cycles, in which case the result could be a short-
er average turnaround time for jobs in the machine.

Code Name Loop Length Parallel Fraction
NAS04 60 5 %
NAS01 100 63 %
NASKERN 256 42 %
NAS06 1,000 88 %
NAS08 11,000 81 %
NAS10 26,500 79 %

Table 11 — Loop Lengths and Parallel Fractions

26

As mentioned before, the overhead does vary with the number of CPUs used. Some of the
poorly parallelizing codes suffer substantial increases in overhead when going to 8 CPUs,
but that doesn't matter much since such codes would probably not be used in their parallel
form. The highly parallel codes, however, add approximately 15% overhead by going from
4 CPUs to 8. The effective parallelism and overhead for the 8 CPU runs are shown in Fig-
ures 18 and 19.

Percent Vectorization

While it is possible, in theory, to parallelize some poorly vectorized code, no evidence was
found in this study that would indicate such was taking place. This may be because such
opportunities might not exist within the selected benchmarks, or because the tools them-
selves might not be set up to do that. While high vectorization levels seem to be required
in order to parallelize a program, it is not a guarantee of success. Several codes, e.g. NAS05
and NASKERN, had higher levels of vectorization than their levels of parallelization would
suggest. (Percent vectorization for each benchmark is calculated in Appendix D.)

Figure 18 — Parallelism in 8 CPU Runs

27

Figure 19 — % Overhead in 8 CPU Runs

Figure 20 shows the relationship between percent vectorization and percent parallelization
for the 4 CPU runs. This chart shows that the effective parallelism is clearly related to the
percent vectorization, although the correlation is not direct. Percent vectorization appears
to be a least upper bound of the percent parallelization, thus it can be substituted directly
into Amdahl's Law to obtain a tight upper bound on parallel speedup. The parallelism val-
ues for the 8 CPU runs are very nearly the same as for the 4 CPU runs, so no separate chart
is presented. Percent parallelism for each benchmark is given in Appendix E.

Each of the remaining charts (Figures 21 through 25) emphasize the high level of vector-
ization needed for a significant performance. At the same time they remind us that high
vectorization is no guarantee
of good parallel performance. It is a necessary but not a sufficient condition for parallel-
ization. Figures 21 and 22 show the parallel speedup as a function of vectorization. Figures
23, 24, and 25 show the performance in MFLOPS as a function of vectorization. The steep
curve associated with Amdahl's Law can be seen in 24 and 25.

28

Figure 20 — 4 CPU % Parallelism vs. % Vectorization

Figure 21 — 4 CPU Speedup vs. % Vectorization

29

Figure 22 — 8 CPU Speedup vs. % Vectorization

Figure 23 — Enhanced Vectorization

30

Figure 24 — 4 CPU MFLOPS

Figure 25 — 8 CPU MFLOPS

31

Compilation Problems

Neither fpp nor KAP were completely free of problems. KAP had more problems than did
fpp, probably because the writers of fpp had greater access to the system, particularly fmp,
the program which translates microtasking directives into CRAY library calls. All of the
bugs we discovered in both products were annoyances, but could be tolerated using a sim-
ple work around. None were so serious as to render the product unusable, and all seemed
to be fixable with no more than a moderate amount of effort. Below we give a brief sum-
mary of the bugs we found.

● KAP incorrectly declares CDIR$ SHORTLOOP on some variable length loops,
which may give either incorrect results or a floating point exception.

● KAP leaves DATA statements within CMIC$ PARALLEL sections, which
causes CRAY Autotasking to fail during compilation. One might argue that DATA
statements may not legally occur where CMIC directives are allowed, but neither
does KAP flag it as an error. Either moving DATA statements to the beginning of
a routine or flagging them as being out of place would be acceptable.

● KAP occasionally uses KAP-generated indexing functions or arrays, but doesn't
provide a definition for them. This causes undefined external references to occur
in the program.

● KAP does not always provide SHARED or PRIVATE declarations for array in-
dex variables it introduces into the program. Parallel programs are very sensitive
to whether certain variables are private or shared, and fmp is not able to decide
which mode is correct.

● Fpp does not always distinguish between comments that are compiler directives
and those that are not. As a result, fpp sometimes rearranges microtasking direc-
tives which should be left in place.

Conclusions

Using fpp to enhance the vectorization does not significantly slow down the compilation
process. It added, on the average, only 23% to the compilation times of our benchmark
suite. On the other hand, neither does it significantly improve its performance. The FFT
codes improved the most, but the best improvement was only 24%.

In contrast, using KAP for enhanced vectorization does slow program compilation down
considerably, adding on the average 112%, and sometimes as much as 350% to the compi-
lation time. To its credit, it does speed up FFTs significantly. In two cases, FFT bench-
marks were improved by approximately 50%. Combining fpp with KAP brought about an
even greater improvement—almost 100%. Like fpp, though, non-FFT codes did not no-
ticeably improve.

Both KAP and fpp substantially slowed the compilation time when they were used for au-
tomatic parallelization, and KAP was usually only a little slower than fpp. Both improved
the performance of CFD codes, especially the 2-D CFD codes. Used together, the improve-

32

ment was a factor of 2.5 to 3.0 using 4 CPUs, and from 2.5 to 4.5 on 8 CPUs. Neither fpp
nor KAP had a significant performance edge over the other.

Neither KAP nor fpp were able to uncover sufficient parallelism in CFD codes for highly
parallel execution. Parallelism ran about 60% to 90% which would correspond to maxi-
mum speedups of 2.5 to 10, given 1) an infinite supply of parallel hardware, and 2) no
increase in the overhead to use it. As good as this is, we anticipate far greater levels of par-
allelism (95% to 99.9%) will be needed to take advantage of future parallel hardware. The
overhead required to maintain parallel execution was relatively large, and reducing this
might significantly improve these values.

Parallel efficiency was much higher for 4 CPU runs (75%) than for 8 CPU runs (50%), pri-
marily due to Amdahl's Law and the modest amount of parallelism found in the programs.
It is a corollary to Amdahl's Law that the efficiency will always be higher for the 4 CPU
runs than the 8 CPU runs. It is because of the moderate levels of parallelism that the par-
allel efficiency differs so greatly.

Overhead from parallelization was high, to the extent that widespread parallelization could
significantly reduce a system's throughput in a production environment. Overhead was es-
pecially high for codes that did not parallelize well. Overhead for the CFD codes on 4
CPUs averaged approximately 15% to 20%. On 8 CPUs the average increased to about
25%.

Program vectorization and Amdahl's Law determine an upper bound on speed improve-
ments due to parallelization. Parallelized codes are highly vectorized codes, but a high lev-
el of vectorization does not guarantee that a code will also parallelize. The need for high
levels of vectorization grows dramatically as the number of CPUs increases.

Because the levels of parallelism KAP and fpp found in even the best codes were much
lower than desired, we conclude that such tools will probably not be able to find sufficient
parallelism without human assistance. In our opinion the ideal tool for parallelizing Fortran
programs would have:

● Extensive dependence analysis — this has been a traditional area of focus, and
allows the tool to distinguish, albeit imperfectly, between code which is paralleliz-
able and code that must remain sequential. Both KAP and fpp seem to do quite well
at this. The most obvious problem was that in order to correctly determine that cer-
tain dependences were false, both tools would have needed information about the
program's runtime behavior, or about its algorithms. More extensive analysis might
help some, but it can't use information that isn't there without a programmer's help.

● Extensive code transformation vocabulary — another area of traditional focus,
it gives the tool the ability to improve the level of parallelism or the granularity of
parallelism while retaining the original meaning of the program. Again, KAP and
fpp seem to do well at this.

● Runtime statistics — allows the tool to steer the user towards the most heavily
used, and therefore most profitably optimized sections of code. It also could retain
program traces and branch probabilities, which might further assist in choosing ap-

33

propriate code restructuring optimizations.

● Queriable interface — allows the tool to display only the information that the
user wants to see, instead of all information thatmight be relevant. It would be ben-
eficial if the interface were sufficiently robust to be able to identify user supplied
patterns in the code, array indices, and variable usages.

● Analysis facility — indicates the circumstances under which perceived depen-
dences arefalse so the programmer can decide whether that section of code is safely
parallelizable.

● Suggestion facility — makes optimization and parallelization suggestions to the
user, and indicates the circumstances under which the suggestions are valid. This
should include an understanding of the vectorization and parallelization overhead
involved, letting the user know when the section of code being parallelized may not
have sufficient work to overcome the expected cost.

Acknowledgements

We would like to thank all those who helped out with the preparation of this report, and as
is always the case, there are several who merit special recognition. Robert Bergeron and
Russell Carter contributed significantly to the ideas in this report, and steered us away from
numerous pitfalls in the data gathering. Kuck and Associates generously allowed the use
of their software and provided the necessary support, which we appreciate greatly. Last but
not least, Eugene Miya contributed to the philosophical foundations of this work.

References

[1] L. Kipp, "Perfect Benchmarks Documentation, Suite 1," Center
for Supercomputing Research and Development, University of
Illinois at Urbana-Champaign, Urbana, IL, 1990.

[2] "CRAY Y-MP Computer Systems Functional Description Manual,"
HR-4001, CRAY Research, Inc., Mendota Heights, MN, 1988.

[3] "CF77 Compiling System, Volume 4: Parallel Processing Guide,"
SG-3074 4.0, CRAY Research, Inc., Mendota Heights, MN, 1990.

[4] "KAP/CRAY User's Guide," Kuck & Associates, Inc., Champaign,
IL, 1989.

34

Appendix A — Benchmark Characteristics

This appendix lists several characteristics for each of the benchmarks. They are:

Source lines — number of text lines in the original program, including comments
and blank lines. No compiler directives are included.

Size — total program memory requirements, in megawords (2**20 64-bit words),
as obtained by compiling the program for sequential execution by the CRAY For-
tran compiler, cft77. Memory size was measured by the UNICOS utility "size".

Floating point adds, multiplies, and reciprocals — total operations in each category
as measured by the Y-MP hardware performance module (group 0).

Data transferred — total program I/O requirements including all raw and formatted
read and write operations. The units are megabytes.

35

36

Appendix B — Compilation Data

This appendix contains the CPU times used to compile each of the programs, both for par-
allel and sequential execution. User and system times were recorded from the Unix C-shell
"time" facility.

37

38

39

40

Appendix C — Performance Data

This appendix contains the following information:

Elapsed sec — total program elapsed (wall clock) execution time, in seconds, as
measured by the UNICOS "ja" utility.

CPU sec — program CPU (user) execution time, in seconds, as measured by the
"ja" utility.

System sec — program system time, in seconds, also from "ja".

% Vectorization — percentage of program instructions that were vector instruc-
tions. This value is calculated in Appendix D.

MFLOPS — millions (10**6) of floating point operations per second. It is calcu-
lated by dividing the total floating point operations (recorded in Appendix A) by the
elapsed time.

Sem. Wait — semaphore wait time as reported by the hardware performance mon-
itor (HPM) group 1. Semaphore wait time indicates the percentage of time CPUs
spend in a "parked" state waiting for work to become available.

Con. CPU — average concurrent CPUs as reported by the "ja" facility. It indicates
the average number of CPUs that are either busy in behalf of the program or idle
available to do work.

Speedup — multiplication factor of improvement in elapsed time over the default
vectorization execution elapsed time. Values below 1.00 indicate the performance
was higher with default vectorization.

Instructions — total vector and scalar instructions executed, as recorded by the
HPM (group 0).

MIPS — millions (10**6) of instructions executed per second.

CPI — average number of clock periods per instruction, or

CPI = F(Elapsed time,Instructions x 6.0 ns/clock)

41

42

43

44

45

46

47

48

49

50

51

52

Appendix D — Vectorization Data

This appendix contains the calculation of the percent vectorization reported in Appendix C.
Block memory reference counts come from the hardware performance monitor (HPM)
group 2. All other values come from HPM group 3. Group 3 measurements were obtained
with avl disabled.

Block memory (a) — block memory transfers (vector loads and stores).

Vector I+L (b) — integer and logical vector instructions.

Vector Float (c) — vector floating point instructions (additions, multiplications and
reciprocals).

Jump/Special (d) — branch, conditional, and special instructions.

Scalar FU (e) — scalar functional unit instructions.

Scalar memory (f) — scalar register load and store instructions.

% Vectorization — percent of program instructions that were vector instructions,
calculated by

% Vectorization = 100 F(a+b+c,a+b+c+d+e+f)

Avg Len-I+L — average vector length of all integer/logical vector operations.

Avg Len-Float — average vector length of all floating point vector operations.

53

54

55

56

57

58

59

60

61

62

63

Appendix E — Effective Parallel Fraction

This appendix gives the effective parallel fraction for each of the parallel program execu-
tions. The formula to compute the parallel fraction is obtained by solving Amdahl's Law,
giving

% p = 100 F(n,(n-1))B(1 - F(TS(,n),TS(,v)))

whereTn andTv are the elapsed times of then-CPU and vector executions, respectively.

64

